当前位置:首页 >> 脚本专栏

Python读取图像并显示灰度图的实现

python读取图像

原图:

Python读取图像并显示灰度图的实现

import cv2 # 利用opencv读取图像
import numpy as np
# 利用matplotlib显示图像
import matplotlib.pyplot as plt 

img = cv2.imread("./lena.png") #读取图像
# 显示图像
plt.imshow(img)
plt.axis('off')
plt.show()

效果:

Python读取图像并显示灰度图的实现

问:为什么画出的图像和原图有色差呢?
答:opencv的颜色通道顺序为[B,G,R],而matplotlib的颜色通道顺序为[R,G,B]。
解决方案:把R和B的位置调换一下

img = img[:,:,(2,1,0)]

再次显示图像
效果:(自己做了就知道了)

图像灰度化算法
Gray = 0.299R+0.587G+0.114*B

r,g,b = [img[:,:,i] for i in range(3)]
img_gray = r*0.299+g*0.587+b*0.114

再次显示图像

plt.imshow(img_gray)
plt.axis('off')
plt.show()

Python读取图像并显示灰度图的实现

问:为什么她绿了?
答:因为我们还是直接使用plt显示图像,它默认使用三通道显示图像。
解决方案:在plt.imshow()添加参数

plt.imshow(img_gray,cmap="gray")
plt.axis('off')
plt.show()

效果:

Python读取图像并显示灰度图的实现