当前位置:首页 >> 脚本专栏

详解pandas赋值失败问题解决

一、pandas对整列赋值

这个比较正常,一般直接赋值就可以:

x = pd.DataFrame({'A': ['1', '2', '3', None, None],
      'B': ['4', '5', '6', '7', None]})
x['A'] = ['10', '11', '12', '13', '14']

详解pandas赋值失败问题解决

二、pandas对非整列赋值

1、用单个值赋值

x = pd.DataFrame({'A': ['1', '2', '3', None, None],
      'B': ['4', '5', '6', '7', None]})
index = x['A'].isna()
x[index]['A'] = 100

详解pandas赋值失败问题解决

是不是很奇怪,没有赋值成功!!

2、用多个值赋值

x = pd.DataFrame({'A': ['1', '2', '3', None, None],
      'B': ['4', '5', '6', '7', None]})
index = x['A'].isna()
x[index] = [100, 200]

详解pandas赋值失败问题解决

报错了!!提示说,要用.loc赋值,那我们试一下。

3、.loc赋值

x = pd.DataFrame({'A': ['1', '2', '3', None, None],
      'B': ['4', '5', '6', '7', None]})
index = x['A'].isna()
x.loc[index, ['A']] = [100, 200]

详解pandas赋值失败问题解决

报错,这是因为shape原因。

x.loc[index, ['A']] = [['100'], ['200']]

详解pandas赋值失败问题解决

三、用数据的另外一列赋值

1、错误方式

x = pd.DataFrame({'A': ['1', '2', '3', '', ''],
        'B': ['4', '5', '6', '7', '']})
index = x['A'].isna()
x.loc[index, ['A']] = x.loc[index, ['B']] 

详解pandas赋值失败问题解决

正确方式

x = pd.DataFrame({'A': ['1', '2', '3', '', ''],
        'B': ['4', '5', '6', '7', '']})
index = x['A'].isna()
x.loc[index, ['A']] = x.loc[index, ['B']].copy().values.tolist()

详解pandas赋值失败问题解决