1. 二维数据曲线图
1.1 绘制二维曲线的基本函数
1.plot()函数
plot函数用于绘制二维平面上的线性坐标曲线图,要提供一组x坐标和对应的y坐标,可以绘制分别以x和y为横、纵坐标的二维曲线。
例:
t=0:0.1:2*pi; x=2 * t; y=t.*sin(t).*sin(t); plot(x, y);
2. 含多个输入参数的plot函数
plot函数可以包含若干组向量对,每一组可以绘制出一条曲线。含多个输入参数的plot函数调用格式为:plot(x1,y1,x2,y2,…,xn,yn)
例:
x=linspace(0,2*pi,100); plot(x,sin(x),x,2*sin(x),x,3*sin(x))
3. 含选项的plot函数
Matlab提供了一些绘图选项,用于确定所绘曲线的线型、颜色和数据点标记符号。这些选项如表所示
线型
颜色
标记符号
-实线
b蓝色
.点
s方块
:虚线
g绿色
o圆圈
d菱形
.-点划线
r红色
x叉
v朝下三角符号
–双划线
c青色
+加号
^朝上三角符号
m品红
*星号
<朝左三角符号
y黄色
朝右三角符号
p 五角星
k黑色
h 六角星
w白色
例: 用不同的线型和颜色在同一坐标内绘制曲线 及其包络线。
x=(0:pi/100:2*pi)'; y1=2*exp(-0.5*x)*[1,-1]; y2=2*exp(-0.5*x).*sin(2*pi*x); x1=(0:12)/2; y3=2*exp(-0.5*x1).*sin(2*pi*x1); plot(x,y1,'k:',x,y2,'b--',x1,y3,'rp');
在该plot函数中包含了3组绘图参数,第一组用黑色虚线画出两条包络线,第二组用蓝色双划线画出曲线y,第三组用红色五角星离散标出数据点。
例: 设置正弦曲线的线宽为 3,设置上三角形进行数据点的标记,并设置标记 点边缘为黑色,设置标记点填充颜色为红色,设置标记点的尺寸为 10,则 MATLAB 代码 如下:
% 横坐标轴 x = linspace(0, 2*pi, 50); % 生成数据点,纵坐标轴 y = 2 * sin(pi * x); % 绘图 figure % 设置线的宽带为3 plot(x, y, 'k--^', 'LineWidth', 3, ... 'MarkerEdgeColor', 'k', ... %设置标记点的边缘颜色为黑色 'MarkerFaceColor', 'r', ... %设置标记点的填充颜色为红色 'MarkerSize', 10) %设置标记点的尺寸为10
例: 利用五角星标记例两曲线的交叉点
% 横坐标轴 x = linspace(0, 2*pi, 1000); % 生成数据点,纵坐标轴 y1 = 0.2 * exp(-0.5 * x).* cos(4 * pi * x); y2 = 2 * exp(-0.5 * x) .* cos(pi * x); % 查找y1与y2相等点(近似相等)的下标 k = find( abs(y1-y2) < 1e-2 ); %取y1与y2相等点的x坐标 x1 = x(k); % 求y1与y2值相等点的y坐标 y3 = 0.2 * exp(-0.5 * x1) .* cos(4 * pi * x1); % 绘图 figure plot(x, y1, 'r-.', x, y2, 'k:', x1, y3, 'bp','LineWidth',2);
4. 双纵坐标函数plotyy
在Matlab中,如果需要绘制出具有不同纵坐标标度的两个图形,可以使用plotyy函数,它能把具有不同量纲,不同数量级的两个函数绘制在同一个坐标中,有利于图形数据的对比分析。使用格式为:plotyy(x1,y1,x2,y2)
x1,y1对应一条曲线,x2,y2对应另一条曲线。横坐标的标度相同,纵坐标有两个,左边的对应x1,y1数据对,右边的对应x2,y2。
x=0:pi/100:2*pi; % 生成曲线 y1=0.2*exp(-0.5*x).*cos(4*pi*x); y2=2*exp(-0.5*x).*cos(pi*x); % 绘图 figure plotyy(x,y1,x,y2); plot(x, y1, 'k-', x, y2, 'k-', 'LineWidth', 3)
1.2 绘制图形的辅助操作
1. 图形标注
title('图形名称') xlabel('x轴说明') ylabel('y轴说明') text(x,y,'图形说明') legend('图例1','图例2',…)
title、xlabel和ylabel函数分别用于说明图形和坐标轴的名称。
text函数是在坐标点(x,y)处添加图形说明。
legend函数用于绘制曲线所用线型、颜色或数据点标记图例,图例放置在空白处,用户还可以通过鼠标移动图例,将其放到所希望的位置。
除legend函数外,其他函数同样适用于三维图形,在三维中z坐标轴说明用zlabel函数。
例:绘制正弦和余弦曲线,设置图形的标题、x 轴和 y 轴的标注,设置曲线标 准。
% 横轴 x=0:pi/50:2*pi; % 曲线数据 y1=sin(x); y2=cos(x); % 绘图 figure plot(x, y1, 'k-', x, y2, 'k-.') % 文本标注 text(pi, 0.05, '\leftarrow sin(\alpha)') text(pi/4-0.05, 0.05, 'cos(\alpha)\rightarrow') % 标题标注 title('sin(\alpha) and cos(\alpha)') % 坐标轴标注 xlabel('\alpha') ylabel('sin(\alpha) and cos(\alpha)')
2. 坐标控制
axis([xmin xmax ymin ymax zmin zmax])
如果只给出前四个参数,则按照给出的x、y轴的最小值和最大值选择坐标系范围,绘制出合适的二维曲线。如果给出了全部参数,则绘制出三维图形。
axis函数的功能丰富,其常用的用法有:
axis equal
:纵横坐标轴采用等长刻度axis square
:产生正方形坐标系(默认为矩形)axis auto
:使用默认设置axis off
:取消坐标轴axis on
:显示坐标轴axis tight
:按紧凑方式显示坐标轴范围,即坐标轴范围为绘图数据的范围grid on/off
:命令控制画还是不画网格线
例:观察曲线 y=cos(tan(πx))在 x=0.5 附近的图形曲线
% x轴 x = 0:1/3000:1; % 生成误差曲线 y = cos(tan(pi*x)); % 绘图 figure % 分裂窗口为2*1个子窗口 subplot(2,1,1) plot(x,y) title('\itcos(tan(\pix))') % 坐标轴调整 subplot(2,1,2) plot(x,y) axis([0.4 0.6 -1 1]); title('复杂函数的局部透视')
subplot(m,n,p)
该函数把当前窗口分成m×n个绘图区,m行,每行n个绘图区,区号按行优先编号。其中第p个区为当前活动区。每一个绘图区允许以不同的坐标系单独绘制图形。
1.3 绘制二维图形的其他函数
1. 对数坐标图
在实际应用中,经常用到对数坐标,Matlab提供了绘制对数和半对数坐标曲线的函数,其调用格式为:
semilogx(x1,y1,选项1,x2,y2,选项2,…) semilogy(x1,y1,选项1,x2,y2,选项2,…) loglog(x1,y1,选项1,x2,y2,选项2,…)
这些函数中选项的定义和plot函数完全一样,所不同的是坐标轴的选取。
semilogx函数使用半对数坐标,x轴为常用对数刻度,而y轴仍保持线性刻度。semilogy恰好和semilogx相反。
loglog函数使用全对数坐标,x、y轴均采用对数刻度。
例:绘制函数 y=e
% x轴 x=0:0.5:5; % y轴 y = exp(x); % 绘图 figure % 笛卡尔坐标系 subplot(4, 1, 1) plot(x, y, 'r-.') title('笛卡尔坐标系') % 半对数坐标系 subplot(4, 1, 2) semilogx(x, y, 'g:') title('x轴为对数坐标系') subplot(4, 1, 3) semilogy(x, y, 'b-') title('y轴为对数坐标系') % 对数坐标系 subplot(4, 1, 4) loglog(x, y, 'k:','LineWidth',4) title('对数坐标系')
1. 饼图
- -
pie(x)
:绘制数据 x 的饼图,x 可以是向量或者矩阵,x 中的每一个元素将代表饼图的一个扇区,同时饼图中显示各元素总和的比例。 - -
pie(x, explode)
:绘制数据 x 的饼图,其中参数 explode 可以用来设置饼图中某个重要的扇区进行抽取式重点显示,这里需要注意的是,explode 向量的长度与 x 中的元素个数相等,并与 x 中的元素意义对应,explode 元素为非零值,对应的元素扇区将从饼图中分离显示,通常非零值都设置为 1。 - -
pie(x, labels)
:绘制数据 x 的饼图,其中参数 labels 可以用来设置饼图中各个扇区的显示标注,注意参数 labels 应该为字符串或者数字利用向量 X中的数据描绘饼图
例:有一位研究生,在一年中平均每月的费用为生活费 190 元,资料费 33 元, 电话费 45 元,购买衣服 42 元,其他费用 45 元。请以饼图表示出他每月的消费比例,并在 饼图中分离出使用最多的费用和使用最少的费用的切片。
% 数据准备 x=[190 33 45 42 45]; % 分离显示设置 explode=[1 1 0 0 0]; % 绘图 figure() colormap hsv pie(x,explode,{'生活费','资料费','电话费','购买衣服','其他费用'}) title('饼图')
2. 条形图
看例子:
%随机函数产生5*3的数组,对产生的数据取整 Y = round(rand(5,3)*10); % 绘图 subplot(2,2,1) bar(Y,'group') title 'Group' %堆型二维垂直条形图 subplot(2,2,2) bar(Y,'stack') title('Stack') %堆型二维水平条形图 subplot(2,2,3) barh(Y,'stack') title('Stack') %设定条形的宽度为1.5 subplot(2,2,4) bar(Y,1.5) title('Width = 1.5')
例:有一位研究生,在一年中平均每月的费用为生活费 190 元,资料费 33 元, 电话费 45 元,购买衣服 42 元,其他费用 45 元。请以柱状图表示出他每月的消费比例。 MATLAB 代码如下:
% 数据准备 y=[190 33 45 42 45]; x=1:5 ; % 绘图 figure bar(x,y) title('柱状图'); set(gca,'xTicklabel',{'生活费','资料费','电话费','购买衣服','其他费用'})
3. 排列图
排列图又称累托(Pareto)图,由一 个横坐标、两个纵坐标、多个按高低顺序 排列的条形和一条折线组成。其中,横坐 标表示各因素,左纵坐标表示频数,右纵 坐标表示频率,折线表示累积的频率。该 图能较好地分析各因素的重要性,可用于 寻找主要问题或主要原因。在MATLAB 中 pareto()函数用于绘制排列图,其调用格式如下:
pareto(y)
:绘制数据y的排列图。y值的大小用排列图条形的高度表示。pareto(y,x)
:绘制数据y的排列图。当x为数值时,用于指定数值型的横坐标。当 x 为字符串时,用于指定字符串型的横坐标。
Y=[100 98 97 90 90]; names={'第1名' '第2名' '第3名' '第4名' '第5名'}; pareto(Y,names)
2. 三维图形
2.1 绘制三维曲线
1.用plot3()函数画三维曲线
最基本的三维图形函数为plot3,它将二维绘图函数plot的有关功能扩展到三维空间,可以用来绘制三维曲线。其调用格式为:
plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…)
其中每一组x,y,z组成一组曲线的坐标参数,选项的定义和plot的选项一样。当x,y,z是同维向量时,则x,y,z对应元素构成一条三维曲线。当x,y,z是同维矩阵时,则以x,y,z对应列元素绘制三维曲线,曲线条数等于矩阵的列数。
例:
t=0:pi/50:2*pi; x=8*cos(t); y=4*sqrt(2)*sin(t); z=-4*sqrt(2)*sin(t); plot3(x,y,z,'p'); title('Line in 3-D Space'); text(0,0,0,'origin'); xlabel('X');ylabel('Y');zlabel('Z');grid;
2. 三维网格图的绘制
在 MATLAB 中,进行三维图形绘制时,常常需要首先创建三维网格,也就是先创建 平面图的坐标系。在 MATLAB 中,常用 meshgrid()函数生成网格数据,其调用格式如下。
[X,Y]=meshgrid(x,y)
:用于生成向量 x 和 y 的网格数据,即变换为矩阵数据 X 和 Y, 矩阵 X 中的行向量为向量 x,矩阵 Y 的列向量为向量 y。[X,Y]=meshgrid(x)
:生成向量 x 的网格数据,函数等同[X,Y]=meshgrid(x,x)
。
[X,Y,Z]=meshgrid(x,y,z)
:生成向量 x、y、z 的三维网格数据,生成的数据 X 和 Y 可分别表示三维绘图中的 x 和 y 坐标。
三维网格图形是指在三维空间内连接相邻的数据点,形成网格。在MATLAB中绘制三维网格图的函数主要有mesh()函数、meshc()函数和meshz()函数。其中,mesh()函数最常 用,其调用格式如下:
mesh(x,y,z)
:绘制三维网格图,x、y、z 分别表示三维网格图形在 x 轴、y 轴和 z 轴 的坐标,图形的颜色由矩阵 z 决定。
mesh(Z)
:绘制三维网格图,分别以矩阵 Z 的列下标、行下标作为三维网格图的 x 轴、y 轴的坐标,图形的颜色由矩阵 Z 决定。
mesh(...,C)
:输入参数C用于控制绘制的三维网格图的颜色。mesh(...,'PropertyName',PropertyValue,...)
:设置三维网格图的指定属性的属性值。
函数 meshc()
可绘制带有等值线的三维网格图,其调用格式与函数 mesh()
基本相同, 但函数 meshc()
不支持对图形网格线或等高线指定属性的设置。
函数 meshz()
可绘制带有图形底边的三维网格图,其调用格式与函数 mesh()
基本相同, 但函数 meshz()
不支持对图形网格线指定属性的设置。
另外,函数ezmesh()
、ezmeshc()
和ezmeshz()
可根据函数表达式直接绘制相应的三维网格图。
由于网格线是不透明的,绘制的三维网格图有时只能显示前面的图形部分,而后面的 部分可能被网格线遮住了,没有显示出来。 MATLAB中提供了命令 hidden 用于观察图形后面隐藏的网格,hidden 命令的调用格式如下:
hidden on
:设置网格隐藏部分不可见,默认情况下为此状态。
hidden off
:设置网格的隐藏部分可见。
hidden
:该命令用于切换网格的隐藏部分是否可见。
例:绘制简单的三维网格图
% 数据准备 t=0:pi/10:pi; x=sin(t); y=cos(t); [X,Y]=meshgrid(x,y); z =X + Y; % 绘图 figure mesh (z,'FaceColor','W','EdgeColor','K') grid title('三维网格图');
2.2 三维表面图的绘制
三维表面图也可以用来表示三维空间内数据的变化规律,与之前讲述的三维网络图的 不同之处在于对网格的区域填充了不同的色彩。在 MATLAB 中绘制三维表面图的函数为 surf()函数,其调用格式如下:
surf(Z)
:绘制数据 Z 的三维表面图,分别以矩阵 Z 的列下标、行下标作为三维网格图的 x 轴、y 轴的坐标,图形的颜色由矩阵 Z 决定。
surf(X, Y, Z)
:绘制三维表面图,X、Y、Z 分别表示三维网格图形在 x 轴、y 轴和 z 轴的坐标,图形的颜色由矩阵 Z 决定。
surf(X, Y, Z, C)
:绘制三维表面图,输入参数 C 用于控制绘制的三维表面图的颜色。
surf(..., 'PropertyName', PropertyValue)
:绘制三维表面图,设置相应属性的属性值。
函数 surfc()
用于绘制带等值线的三维表面图,其调用格式同函数 surf()
基本相同,函数 surfl()
可用于绘制带光照模式的三维表面图,与函数 surf()
和 surfc()
不同的调用格式如下:
surfl(...,'light')
:以光照对象 light 生成一个带颜色、带光照的曲面。surfl(...,'cdata')
:输入参数 cdata 设置曲面颜色数据,使曲面成为可反光的曲面。
surfl(...,s)
:输入参数 s 为一个二维向量[azimuth,elevation],或者三维向量[x,y,z],用于指定光源方向,默认情况下光源方位从当前视角开始,逆时针 45°。
例:简单对 surf()
函数进行举例
% 数据准备 xi=-10:0.5:10; yi=-10:0.5:10; [x,y]=meshgrid(xi,yi); z=sin(sqrt(x.^2+y.^2))./sqrt(x.^2+y.^2); % 绘图 surf(x,y,z)
2.3 三维切片图的绘制
在MATLAB中slice()函数用于绘制三维切片图。三维切片图可形象地称为“四维图”,可以在三维空间内表达第四维的信息,用颜色来标识第四维数据的大小。slice()函数的调用格式如下:
slice(v, sx, sy, sz)
:输入参数 v 为三维矩阵(阶数为 m x n x p),x、y、z 轴默认状态下分别为 1:m、1:n、1:p,数据 v 用于指定第四维的大小,在切片图上显示为不同的颜色,输入参数 sx、sy、sz 分别用于指定切片图在 x、y、z 轴所切的位置。
slice(x ,y, z, v, sx, sy, sz)
:输入参数 x、y、z用于指定绘制的三维切片图的 x、y、z轴。
slice(...,'method')
:输入参数method用于指定切片图绘制时的内插值法,'method' 可以设置的参数有:'linear'(三次线性内插值法,默认)、'cubic'(三次立方内插 值法)、'nearest'(最近点内插值法)。
例:观察函数在-2≤x≤2、-2≤y≤2、-2≤z≤2 上的体积情况
% 数据准备 xi=-10:0.5:10; yi=-10:0.5:10; [x,y]=meshgrid(xi,yi); z=sin(sqrt(x.^2+y.^2))./sqrt(x.^2+y.^2); [x,y,z] = meshgrid(-2:.2:2, -2:.25:2, -2:.16:2); v = x.*exp(-x.^2-y.^2-z.^2); xslice = [-1.2,.8,2]; yslice = 2; zslice = [-2,0]; % 绘图 slice(x,y,z,v,xslice,yslice,zslice)