多分类一种比较常用的做法是在最后一层加softmax归一化,值最大的维度所对应的位置则作为该样本对应的类。本文采用PyTorch框架,选用经典图像数据集mnist学习一波多分类。
MNIST数据集
MNIST 数据集(手写数字数据集)来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据。MNIST数据集下载地址:http://yann.lecun.com/exdb/mnist/。手写数字的MNIST数据库包括60,000个的训练集样本,以及10,000个测试集样本。
其中:
train-images-idx3-ubyte.gz (训练数据集图片)
train-labels-idx1-ubyte.gz (训练数据集标记类别)
t10k-images-idx3-ubyte.gz: (测试数据集)
t10k-labels-idx1-ubyte.gz(测试数据集标记类别)
MNIST数据集是经典图像数据集,包括10个类别(0到9)。每一张图片拉成向量表示,如下图784维向量作为第一层输入特征。
Softmax分类
softmax函数的本质就是将一个K 维的任意实数向量压缩(映射)成另一个K维的实数向量,其中向量中的每个元素取值都介于(0,1)之间,并且压缩后的K个值相加等于1(变成了概率分布)。在选用Softmax做多分类时,可以根据值的大小来进行多分类的任务,如取权重最大的一维。softmax介绍和公式网上很多,这里不介绍了。下面使用Pytorch定义一个多层网络(4个隐藏层,最后一层softmax概率归一化),输出层为10正好对应10类。
PyTorch实战
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.autograd import Variable # Training settings batch_size = 64 # MNIST Dataset train_dataset = datasets.MNIST(root='./mnist_data/', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./mnist_data/', train=False, transform=transforms.ToTensor()) # Data Loader (Input Pipeline) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.l1 = nn.Linear(784, 520) self.l2 = nn.Linear(520, 320) self.l3 = nn.Linear(320, 240) self.l4 = nn.Linear(240, 120) self.l5 = nn.Linear(120, 10) def forward(self, x): # Flatten the data (n, 1, 28, 28) --> (n, 784) x = x.view(-1, 784) x = F.relu(self.l1(x)) x = F.relu(self.l2(x)) x = F.relu(self.l3(x)) x = F.relu(self.l4(x)) return F.log_softmax(self.l5(x), dim=1) #return self.l5(x) model = Net() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) def train(epoch): # 每次输入barch_idx个数据 for batch_idx, (data, target) in enumerate(train_loader): data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) # loss loss = F.nll_loss(output, target) loss.backward() # update optimizer.step() if batch_idx % 200 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.data[0])) def test(): test_loss = 0 correct = 0 # 测试集 for data, target in test_loader: data, target = Variable(data, volatile=True), Variable(target) output = model(data) # sum up batch loss test_loss += F.nll_loss(output, target).data[0] # get the index of the max pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).cpu().sum() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1,6): train(epoch) test() 输出结果: Train Epoch: 1 [0/60000 (0%)] Loss: 2.292192 Train Epoch: 1 [12800/60000 (21%)] Loss: 2.289466 Train Epoch: 1 [25600/60000 (43%)] Loss: 2.294221 Train Epoch: 1 [38400/60000 (64%)] Loss: 2.169656 Train Epoch: 1 [51200/60000 (85%)] Loss: 1.561276 Test set: Average loss: 0.0163, Accuracy: 6698/10000 (67%) Train Epoch: 2 [0/60000 (0%)] Loss: 0.993218 Train Epoch: 2 [12800/60000 (21%)] Loss: 0.859608 Train Epoch: 2 [25600/60000 (43%)] Loss: 0.499748 Train Epoch: 2 [38400/60000 (64%)] Loss: 0.422055 Train Epoch: 2 [51200/60000 (85%)] Loss: 0.413933 Test set: Average loss: 0.0065, Accuracy: 8797/10000 (88%) Train Epoch: 3 [0/60000 (0%)] Loss: 0.465154 Train Epoch: 3 [12800/60000 (21%)] Loss: 0.321842 Train Epoch: 3 [25600/60000 (43%)] Loss: 0.187147 Train Epoch: 3 [38400/60000 (64%)] Loss: 0.469552 Train Epoch: 3 [51200/60000 (85%)] Loss: 0.270332 Test set: Average loss: 0.0045, Accuracy: 9137/10000 (91%) Train Epoch: 4 [0/60000 (0%)] Loss: 0.197497 Train Epoch: 4 [12800/60000 (21%)] Loss: 0.234830 Train Epoch: 4 [25600/60000 (43%)] Loss: 0.260302 Train Epoch: 4 [38400/60000 (64%)] Loss: 0.219375 Train Epoch: 4 [51200/60000 (85%)] Loss: 0.292754 Test set: Average loss: 0.0037, Accuracy: 9277/10000 (93%) Train Epoch: 5 [0/60000 (0%)] Loss: 0.183354 Train Epoch: 5 [12800/60000 (21%)] Loss: 0.207930 Train Epoch: 5 [25600/60000 (43%)] Loss: 0.138435 Train Epoch: 5 [38400/60000 (64%)] Loss: 0.120214 Train Epoch: 5 [51200/60000 (85%)] Loss: 0.266199 Test set: Average loss: 0.0026, Accuracy: 9506/10000 (95%) Process finished with exit code 0
随着训练迭代次数的增加,测试集的精确度还是有很大提高的。并且当迭代次数为5时,使用这种简单的网络可以达到95%的精确度。
以上这篇PyTorch: Softmax多分类实战操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。