当前位置:首页 >> 脚本专栏

keras 指定程序在某块卡上训练实例

场景:某台机器上有三块卡,想同时开三个程序,放到三块卡上去训练。

策略:CUDA_VISIBLE_DEVICES=1 python train.py就可以指定程序在某块卡上训练。

keras 指定程序在某块卡上训练实例

补充知识:keras指定GPU及显存使用量

指定GPU

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

指定GPU和显存使用量

import os
from keras.backend.tensorflow_backend import set_session

os.environ["CUDA_VISIBLE_DEVICES"] = "0"
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.3
set_session(tf.Session(config=config))

指定GPU显存使用按需分配

import keras.backend.tensorflow_backend as KTF
import os

os.environ["CUDA_VISIBLE_DEVICES"] = "0"
config = tf.ConfigProto()
config.gpu_options.allow_growth=True 
sess = tf.Session(config=config)
KTF.set_session(sess)

以上这篇keras 指定程序在某块卡上训练实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。