线性逻辑回归
本文用代码实现怎么利用sklearn来进行线性逻辑回归的计算,下面先来看看用到的数据。
这是有两行特征的数据,然后第三行是数据的标签。
python代码
首先导入包和载入数据
写一个画图的函数,把这些数据表示出来:
然后我们调用这个函数得到下面的图像:
接下来开始创建模型并拟合,然后调用sklearn里面的逻辑回归方法,里面的函数可以自动帮算出权值和偏置值,非常简单,接着画出图像。
可以看到,正确率、召回率、F1值都达到了95%。
非线性逻辑回归
非线性逻辑回归意味着决策边界是曲线,和线性逻辑回归的原理是差不多的,这里用到的数据是datasets自动生成的,
接下来要把数据进行多项式处理,简单地说就是增加数据的特征,
然后规定好图像的坐标值,并生成一个网格矩阵,
定义一个等高线的高,
结果一目了然,很好的分成了两类:
看一下准确率,98%,说明算比较成功,准确率很高。
线性逻辑回归和非线性逻辑回归用到的代价函数都是一样的,原理相同,只不过是预估函数的复杂度不一样,非线性逻辑回归要对数据进行多项式处理,增加数据的特征量。