跟朋友最近聊起来数独游戏,突发奇想使用python编写一个自动计算数独解的小程序。
数独的规则不再过多阐述,在此描述一下程序的主要思路:
(当前程序只针对于简单的数独,更复杂的还待深入挖掘)
1.计算当前每个空格可能的取值集合,并将空格顺序值对应取值集合置于字典中;
2.对取值集合位数为1,即空格处为单一取值的进行赋值,(填入动作),重复1刷新字典直到字典为空位置;
当前实现如下:
1.将数独输入列表中,并定义函数count_candinate_number(j)根据数独规则计算每一个为0的位置的当前可能取值:
#编辑数独题目,将题目输入列表中 question = [6,0,7,0,0,0,9,0,3, 0,0,8,0,0,7,0,0,0, 3,0,0,0,8,2,0,7,5, 0,1,2,3,0,5,0,0,0, 0,0,6,0,0,0,5,0,0, 0,0,0,4,0,6,7,1,0, 2,6,0,7,4,0,0,0,8, 0,0,0,8,0,0,6,0,0, 7,0,5,0,0,0,1,0,9] # print(question[0]) #返回当前数独为0的空格中所有可能取值 def count_candidate_number(j): exist_all_number = [] #当前横竖大方格内所有出现的数字集 candidate_number = [] #该方格内所有的数字候选集 SD_Row = int(j) // 9 #行 SD_Column = int(j) % 9 #列 #用迭代器写 exist_all_number_part1 = [question[i+SD_Row*9] for i in range(9)] #横-出现的所有数字集 exist_all_number_part2 = [question[i*9+SD_Column] for i in range(9)] #竖-出现的所有数字集 exist_all_number_part3 = [question[((j//9)//3)*27+((j % 9)//3)*3+i] for i in range(3)]+[question[((j//9)//3)*27+((j % 9)//3)*3+9+i] for i in range(3)]+[question[((j//9)//3)*27+((j % 9)//3)*3+18+i] for i in range(3)] #大方块-出现的所有数字集 exist_all_number = list(set(exist_all_number_part1+exist_all_number_part2+exist_all_number_part3)) #对出现所有的数字集组合及去重 # print(exist_all_number) #用循环写 # for i in range(9): # if question[i+SD_Row*9] not in exist_all_number: # exist_all_number.append(question[i+SD_Row*9]) # if question[i*9 + SD_Cloumn] not in exist_all_number: # exist_all_number.append(question[i*9 + SD_Cloumn]) # # print(exist_all_number) #迭代器写 candidate_number = [i for i in range(1, 10) if i not in exist_all_number] #对可能取值进行迭代输出 #用循环写 # for i in range(1,10): # if i not in exist_all_number: # candidate_number.append(i) # print(candidate_number) return candidate_number
2.定义函数求解对应每个为0的位置的可能求解,并将位置信息与可能求解以键-键值的形式存储于字典中:
#对数组中每个为0的空格列出所有可能的取值数集,并放置于字典中 def all_possible_candidate_number(): all_possible_candidate_number = {i:count_candidate_number(i) for i in range(81) if question[i] == 0} return all_possible_candidate_number # print(all_possible_candidate_number)
3.对每一个位置的可能求解进行判断,若可能解只有一个,则填入该解,循环直至数独求解完成
def main_count(): answer_sudoku = question candidate_number_dic = {} while True: candidate_number_dic = all_possible_candidate_number() #在每次循环之前刷当前每个为0的空格,所有的取值集合 if candidate_number_dic == {}: #如果为空,则证明没有为0的空格,则为求解 answer_sudoku = question #对answer_sudoku赋值,并打印 print("已求解",answer_sudoku) break else: for eachkey,eachValue in candidate_number_dic.items(): #对字典中位数为1的取值集合,既确定该数字变为当前应取值 if len(eachValue) == 1: answer_sudoku[eachkey] = eachValue[0] print(eachkey,eachValue[0]) #打印对应键值及对应数值 pass if __name__ == '__main__': main_count()
程序运行结果:
D:\pythonwokr\venv\Scripts\python.exe D:/pythonwokr/数独.py 已求解 [6, 2, 7, 5, 1, 4, 9, 8, 3, 5, 4, 8, 9, 3, 7, 2, 6, 1, 3, 9, 1, 6, 8, 2, 4, 7, 5, 4, 1, 2, 3, 7, 5, 8, 9, 6, 9, 7, 6, 1, 2, 8, 5, 3, 4, 8, 5, 3, 4, 9, 6, 7, 1, 2, 2, 6, 9, 7, 4, 1, 3, 5, 8, 1, 3, 4, 8, 5, 9, 6, 2, 7, 7, 8, 5, 2, 6, 3, 1, 4, 9] Process finished with exit code 0
程序到这里就结束了,下一步拓展是对于若不存在单独唯一解的情况,待续。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。