python高级特性
1、集合的推导式
"font-size: medium; font-family: Simsun; white-space: normal; word-spacing: 0px; text-transform: none; font-weight: normal; color: rgb(0,0,0); font-style: normal; text-align: center; orphans: 2; widows: 2; letter-spacing: normal; text-indent: 0px; font-variant-ligatures: normal; font-variant-caps: normal; -webkit-text-stroke-width: 0px">
2、多函数模式
函数列表,python中一切皆对象。
# 处理字符串 str_lst = ['$1.123', ' $1123.454', '$899.12312'] def remove_space(str): """ remove space """ str_no_space = str.replace(' ', '') return str_no_space def remove_dollar(str): """ remove $ """ if '$' in str: return str.replace('$', '') else: return str def clean_str_lst(str_lst, operations): """ clean string list """ result = [] for item in str_lst: for op in operations: item = op(item) result.append(item) return result clean_operations = [remove_space, remove_dollar] result = clean_str_lst(str_lst, clean_operations) print result
执行结果:['1.123', '1123.454', '899.12312']
3、匿名函数lambda
python高阶函数
1、函数式编程
2、map/reduce函数
"htmlcode">
lst = [a1, a2 ,a3, ......, an] reduce(func(x,y), lst) = func(func(func(a1, a2), a3), ......, an)
3、filter函数
下面看下Python高级函数使用
map的使用:map(function, iterable, ...)
"htmlcode">
> def f(x): ... return x + x ... > r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9]) > list(r) [2, 4, 6, 8, 10, 12, 14, 16, 18] # 提供了两个列表,对相同位置的列表数据进行相加 > map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10]) [3, 7, 11, 15, 19]
reduce的使用:reduce(function, iterable[, initializer])
"htmlcode">
> from functools import reduce > def add(x, y): ... return x + y ... > reduce(add, [1, 3, 5, 7, 9]) 25 > reduce(lambda x, y: x+y, [1,2,3,4,5]) # 使用 lambda 匿名函数 15 from functools import reduce def add(x,y): return x + y print (reduce(add, range(1, 101)))
filter的使用:filter(function, iterable)
"htmlcode">
def is_odd(n): return n % 2 == 1 list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15])) # 结果: [1, 5, 9, 15] def not_empty(s): return s and s.strip() list(filter(not_empty, ['A', '', 'B', None, 'C', ' '])) # 结果: ['A', 'B', 'C']
filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。
sorted的使用:sorted(iterable[, cmp[, key[, reverse]]])
Python内置的sorted()函数就可以对list进行排序:
>a = [5,7,6,3,4,1,2] > b = sorted(a) # 保留原列表 > a [5, 7, 6, 3, 4, 1, 2] > b [1, 2, 3, 4, 5, 6, 7] 此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序: > sorted([36, 5, -12, 9, -21], key=abs) #key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序。对比原始的list和经过key=abs处理过的list: #list = [36, 5, -12, 9, -21] #keys = [36, 5, 12, 9, 21] [5, 9, -12, -21, 36] #字符串排序 > sorted(['bob', 'about', 'Zoo', 'Credit']) ['Credit', 'Zoo', 'about', 'bob']
默认情况下,对字符串排序,是按照ASCII的大小比较的,由于'Z' < 'a',结果,大写字母Z会排在小写字母a的前面。
要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True:
> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True) ['Zoo', 'Credit', 'bob', 'about']
raw_input的使用:raw_input([prompt])
prompt: 可选,字符串,可作为一个提示语。
raw_input() 将所有输入作为字符串看待
>a = raw_input("input:") input:123 > type(a) <type 'str'> # 字符串 > a = raw_input("input:") input:runoob > type(a) <type 'str'> # 字符串 > input() 需要输入 python 表达式 >a = input("input:") input:123 # 输入整数 > type(a) <type 'int'> # 整型 > a = input("input:") input:"runoob" # 正确,字符串表达式 > type(a) <type 'str'> # 字符串 > a = input("input:") input:runoob # 报错,不是表达式 Traceback (most recent call last): File "<stdin>", line 1, in <module> File "<string>", line 1, in <module> NameError: name 'runoob' is not defined <type 'str'>
总结
以上所述是小编给大家介绍的python高级特性和高阶函数及使用详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!