当前位置:首页 >> 脚本专栏

python实战教程之自动扫雷

前言

自动扫雷一般分为两种,一种是读取内存数据,而另一种是通过分析图片获得数据,并通过模拟鼠标操作,这里我用的是第二种方式。

一、准备工作

1.扫雷游戏

我是win10,没有默认的扫雷,所以去扫雷网下载

http://www.saolei.net/BBS/

python实战教程之自动扫雷

2.python 3

我的版本是 python 3.6.1

3.python的第三方库

win32api,win32gui,win32con,Pillow,numpy,opencv

可通过 pip install --upgrade SomePackage 来进行安装

注意:有的版本是下载pywin32,但是有的要把pywin32升级到最高并自动下载了pypiwin32,具体情况每个python版本可能都略有不同

我给出我的第三方库和版本仅供参考

python实战教程之自动扫雷 

二、关键代码组成

1.找到游戏窗口与坐标

#扫雷游戏窗口
class_name = "TMain"
title_name = "Minesweeper Arbiter "
hwnd = win32gui.FindWindow(class_name, title_name)

#窗口坐标
left = 0
top = 0
right = 0
bottom = 0

if hwnd:
 print("找到窗口")
 left, top, right, bottom = win32gui.GetWindowRect(hwnd)
 #win32gui.SetForegroundWindow(hwnd)
 print("窗口坐标:")
 print(str(left)+' '+str(right)+' '+str(top)+' '+str(bottom))
else:
 print("未找到窗口")

2.锁定并抓取雷区图像

#锁定雷区坐标#去除周围功能按钮以及多余的界面#具体的像素值是通过QQ的截图来判断的
left += 15
top += 101
right -= 15
bottom -= 42

#抓取雷区图像
rect = (left, top, right, bottom)
img = ImageGrab.grab().crop(rect)

3.各图像的RGBA值

#数字1-8 周围雷数
#0 未被打开
#ed 被打开 空白
#hongqi 红旗
#boom 普通雷#boom_red 踩中的雷
rgba_ed = [(225, (192, 192, 192)), (31, (128, 128, 128))]
rgba_hongqi = [(54, (255, 255, 255)), (17, (255, 0, 0)), (109, (192, 192, 192)), (54, (128, 128, 128)), (22, (0, 0, 0))]
rgba_0 = [(54, (255, 255, 255)), (148, (192, 192, 192)), (54, (128, 128, 128))]
rgba_1 = [(185, (192, 192, 192)), (31, (128, 128, 128)), (40, (0, 0, 255))]
rgba_2 = [(160, (192, 192, 192)), (31, (128, 128, 128)), (65, (0, 128, 0))]
rgba_3 = [(62, (255, 0, 0)), (163, (192, 192, 192)), (31, (128, 128, 128))]
rgba_4 = [(169, (192, 192, 192)), (31, (128, 128, 128)), (56, (0, 0, 128))]
rgba_5 = [(70, (128, 0, 0)), (155, (192, 192, 192)), (31, (128, 128, 128))]
rgba_6 = [(153, (192, 192, 192)), (31, (128, 128, 128)), (72, (0, 128, 128))]
rgba_8 = [(149, (192, 192, 192)), (107, (128, 128, 128))]
rgba_boom = [(4, (255, 255, 255)), (144, (192, 192, 192)), (31, (128, 128, 128)), (77, (0, 0, 0))]
rgba_boom_red = [(4, (255, 255, 255)), (144, (255, 0, 0)), (31, (128, 128, 128)), (77, (0, 0, 0))]

4.扫描雷区图像保存至一个二维数组map

#扫描雷区图像
def showmap():
 img = ImageGrab.grab().crop(rect)
 for y in range(blocks_y):
 for x in range(blocks_x):
  this_image = img.crop((x * block_width, y * block_height, (x + 1) * block_width, (y + 1) * block_height))
  if this_image.getcolors() == rgba_0:
  map[y][x] = 0
  elif this_image.getcolors() == rgba_1:
  map[y][x] = 1
  elif this_image.getcolors() == rgba_2:
  map[y][x] = 2
  elif this_image.getcolors() == rgba_3:
  map[y][x] = 3
  elif this_image.getcolors() == rgba_4:
  map[y][x] = 4
  elif this_image.getcolors() == rgba_5:
  map[y][x] = 5
  elif this_image.getcolors() == rgba_6:
  map[y][x] = 6
  elif this_image.getcolors() == rgba_8:
  map[y][x] = 8
  elif this_image.getcolors() == rgba_ed:
  map[y][x] = -1
  elif this_image.getcolors() == rgba_hongqi:
  map[y][x] = -4
  elif this_image.getcolors() == rgba_boom or this_image.getcolors() == rgba_boom_red:
  global gameover
  gameover = 1
  break
  #sys.exit(0)
  else:
  print("无法识别图像")
  print("坐标")
  print((y,x))
  print("颜色")
  print(this_image.getcolors())
  sys.exit(0)
 #print(map)

5.扫雷算法

这里我采用的最基础的算法

1.首先点出一个点

2.扫描所有数字,如果周围空白+插旗==数字,则空白均有雷,右键点击空白插旗

3.扫描所有数字,如果周围插旗==数字,则空白均没有雷,左键点击空白

4.循环2、3,如果没有符合条件的,则随机点击一个白块

#插旗
def banner():
 showmap()
 for y in range(blocks_y):
 for x in range(blocks_x):
  if 1 <= map[y][x] and map[y][x] <= 5:
  boom_number = map[y][x]
  block_white = 0
  block_qi = 0
  for yy in range(y-1,y+2):
   for xx in range(x-1,x+2):
   if 0 <= yy and 0 <= xx and yy < blocks_y and xx < blocks_x:
    if not (yy == y and xx == x):if map[yy][xx] == 0:
     block_white += 1
    elif map[yy][xx] == -4:
     block_qi += 1if boom_number == block_white + block_qi:for yy in range(y - 1, y + 2):
   for xx in range(x - 1, x + 2):
    if 0 <= yy and 0 <= xx and yy < blocks_y and xx < blocks_x:
    if not (yy == y and xx == x):
     if map[yy][xx] == 0:
     win32api.SetCursorPos([left+xx*block_width, top+yy*block_height])
     win32api.mouse_event(win32con.MOUSEEVENTF_RIGHTDOWN, 0, 0, 0, 0)
     win32api.mouse_event(win32con.MOUSEEVENTF_RIGHTUP, 0, 0, 0, 0)
     showmap()

#点击白块
def dig():
 showmap()
 iscluck = 0
 for y in range(blocks_y):
 for x in range(blocks_x):
  if 1 <= map[y][x] and map[y][x] <= 5:
  boom_number = map[y][x]
  block_white = 0
  block_qi = 0
  for yy in range(y - 1, y + 2):
   for xx in range(x - 1, x + 2):
   if 0 <= yy and 0 <= xx and yy < blocks_y and xx < blocks_x:
    if not (yy == y and xx == x):
    if map[yy][xx] == 0:
     block_white += 1
    elif map[yy][xx] == -4:
     block_qi += 1if boom_number == block_qi and block_white > 0:for yy in range(y - 1, y + 2):
   for xx in range(x - 1, x + 2):
    if 0 <= yy and 0 <= xx and yy < blocks_y and xx < blocks_x:
    if not(yy == y and xx == x):
     if map[yy][xx] == 0:
     win32api.SetCursorPos([left + xx * block_width, top + yy * block_height])
     win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0)
     win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, 0, 0, 0, 0)
     iscluck = 1
 if iscluck == 0:
 luck()

#随机点击
def luck():
 fl = 1
 while(fl):
 random_x = random.randint(0, blocks_x - 1)
 random_y = random.randint(0, blocks_y - 1)
 if(map[random_y][random_x] == 0):
  win32api.SetCursorPos([left + random_x * block_width, top + random_y * block_height])
  win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0)
  win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, 0, 0, 0, 0)
  fl = 0

def gogo(): win32api.SetCursorPos([left, top]) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, 0, 0, 0, 0) showmap() global gameover while(1): if(gameover == 0):  banner()  banner()  dig() else:  gameover = 0  win32api.keybd_event(113, 0, 0, 0)  win32api.SetCursorPos([left, top])  win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0)  win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, 0, 0, 0, 0)  showmap()

这个算法在初级和中级通过率都不错,但是在高级成功率惨不忍睹,主要是没有考虑逻辑组合以及白块是雷的概率问题,可以对这两个点进行改进,提高成功率

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。