本文实例为大家分享了python微信跳一跳的具体代码,供大家参考,具体内容如下
部分代码分享:
wechat_jump.py
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation import math import time import os import cv2 import datetime scale = 0.25 template = cv2.imread('character.png') template = cv2.resize(template, (0, 0), fx=scale, fy=scale) template_size = template.shape[:2] def search(img): result = cv2.matchTemplate(img, template, cv2.TM_SQDIFF) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) cv2.rectangle(img, (min_loc[0], min_loc[1]), (min_loc[0] + template_size[1], min_loc[1] + template_size[0]), (255, 0, 0), 4) return img, min_loc[0] + template_size[1] / 2, min_loc[1] + template_size[0] def pull_screenshot(): filename = datetime.datetime.now().strftime("%H%M%S") + '.png' os.system('mv autojump.png {}'.format(filename)) os.system('adb shell screencap -p /sdcard/autojump.png') os.system('adb pull /sdcard/autojump.png .') def jump(distance): press_time = distance * 1.35 press_time = int(press_time) cmd = 'adb shell input swipe 320 410 320 410 ' + str(press_time) print(cmd) os.system(cmd) def update_data(): global src_x, src_y img = cv2.imread('autojump.png') img = cv2.resize(img, (0, 0), fx=scale, fy=scale) img, src_x, src_y = search(img) return img fig = plt.figure() index = 0 # pull_screenshot() img = update_data() update = True im = plt.imshow(img, animated=True) def updatefig(*args): global update if update: time.sleep(1) pull_screenshot() im.set_array(update_data()) update = False return im, def onClick(event): global update global src_x, src_y dst_x, dst_y = event.xdata, event.ydata distance = (dst_x - src_x)**2 + (dst_y - src_y)**2 distance = (distance ** 0.5) / scale print('distance = ', distance) jump(distance) update = True fig.canvas.mpl_connect('button_press_event', onClick) ani = animation.FuncAnimation(fig, updatefig, interval=5, blit=True) plt.show()
wechat_jump_auto.py
# coding: utf-8 import os import sys import subprocess import shutil import time import math from PIL import Image, ImageDraw import random import json import re # === 思路 === # 核心:每次落稳之后截图,根据截图算出棋子的坐标和下一个块顶面的中点坐标, # 根据两个点的距离乘以一个时间系数获得长按的时间 # 识别棋子:靠棋子的颜色来识别位置,通过截图发现最下面一行大概是一条直线,就从上往下一行一行遍历, # 比较颜色(颜色用了一个区间来比较)找到最下面的那一行的所有点,然后求个中点, # 求好之后再让 Y 轴坐标减小棋子底盘的一半高度从而得到中心点的坐标 # 识别棋盘:靠底色和方块的色差来做,从分数之下的位置开始,一行一行扫描,由于圆形的块最顶上是一条线, # 方形的上面大概是一个点,所以就用类似识别棋子的做法多识别了几个点求中点, # 这时候得到了块中点的 X 轴坐标,这时候假设现在棋子在当前块的中心, # 根据一个通过截图获取的固定的角度来推出中点的 Y 坐标 # 最后:根据两点的坐标算距离乘以系数来获取长按时间(似乎可以直接用 X 轴距离) # TODO: 解决定位偏移的问题 # TODO: 看看两个块中心到中轴距离是否相同,如果是的话靠这个来判断一下当前超前还是落后,便于矫正 # TODO: 一些固定值根据截图的具体大小计算 # TODO: 直接用 X 轴距离简化逻辑 def open_accordant_config(): screen_size = _get_screen_size() config_file = "{path}/config/{screen_size}/config.json".format( path=sys.path[0], screen_size=screen_size ) if os.path.exists(config_file): with open(config_file, 'r') as f: print("Load config file from {}".format(config_file)) return json.load(f) else: with open('{}/config/default.json'.format(sys.path[0]), 'r') as f: print("Load default config") return json.load(f) def _get_screen_size(): size_str = os.popen('adb shell wm size').read() if not size_str: print('请安装ADB及驱动并配置环境变量') sys.exit() m = re.search('(\d+)x(\d+)', size_str) if m: width = m.group(1) height = m.group(2) return "{height}x{width}".format(height=height, width=width) config = open_accordant_config() # Magic Number,不设置可能无法正常执行,请根据具体截图从上到下按需设置 under_game_score_y = config['under_game_score_y'] press_coefficient = config['press_coefficient'] # 长按的时间系数,请自己根据实际情况调节 piece_base_height_1_2 = config['piece_base_height_1_2'] # 二分之一的棋子底座高度,可能要调节 piece_body_width = config['piece_body_width'] # 棋子的宽度,比截图中量到的稍微大一点比较安全,可能要调节 # 模拟按压的起始点坐标,需要自动重复游戏请设置成“再来一局”的坐标 if config.get('swipe'): swipe = config['swipe'] else: swipe = {} #设置模拟按压各项参数,经过多台手机测试,其中2160x1080建议调整参数为320,1210,720,910 #使用vivox20,夏普全面屏和小米mix2测试过,均可达到2000+分数(记得在开发者设置打开usb安全验证) swipe['x1'], swipe['y1'], swipe['x2'], swipe['y2'] = 320, 410, 320, 410 screenshot_way = 2 screenshot_backup_dir = 'screenshot_backups/' if not os.path.isdir(screenshot_backup_dir): os.mkdir(screenshot_backup_dir) def pull_screenshot(): global screenshot_way # 新的方法请根据效率及适用性由高到低排序 if screenshot_way == 2 or screenshot_way == 1: process = subprocess.Popen('adb shell screencap -p', shell=True, stdout=subprocess.PIPE) screenshot = process.stdout.read() if screenshot_way == 2: binary_screenshot = screenshot.replace(b'\r\n', b'\n') else: binary_screenshot = screenshot.replace(b'\r\r\n', b'\n') f = open('autojump.png', 'wb') f.write(binary_screenshot) f.close() elif screenshot_way == 0: os.system('adb shell screencap -p /sdcard/autojump.png') os.system('adb pull /sdcard/autojump.png .') def backup_screenshot(ts): # 为了方便失败的时候 debug if not os.path.isdir(screenshot_backup_dir): os.mkdir(screenshot_backup_dir) shutil.copy('autojump.png', '{}{}.png'.format(screenshot_backup_dir, ts)) def save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y): draw = ImageDraw.Draw(im) # 对debug图片加上详细的注释 draw.line((piece_x, piece_y) + (board_x, board_y), fill=2, width=3) draw.line((piece_x, 0, piece_x, im.size[1]), fill=(255, 0, 0)) draw.line((0, piece_y, im.size[0], piece_y), fill=(255, 0, 0)) draw.line((board_x, 0, board_x, im.size[1]), fill=(0, 0, 255)) draw.line((0, board_y, im.size[0], board_y), fill=(0, 0, 255)) draw.ellipse((piece_x - 10, piece_y - 10, piece_x + 10, piece_y + 10), fill=(255, 0, 0)) draw.ellipse((board_x - 10, board_y - 10, board_x + 10, board_y + 10), fill=(0, 0, 255)) del draw im.save('{}{}_d.png'.format(screenshot_backup_dir, ts)) def set_button_position(im): # 将swipe设置为 `再来一局` 按钮的位置 global swipe_x1, swipe_y1, swipe_x2, swipe_y2 w, h = im.size left = w / 2 top = int(1584 * (h / 1920.0)) swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top def jump(distance): press_time = distance * press_coefficient press_time = max(press_time, 200) # 设置 200 ms 是最小的按压时间 press_time = int(press_time) cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format( x1=swipe_x1, y1=swipe_y1, x2=swipe_x2, y2=swipe_y2, duration=press_time ) print(cmd) os.system(cmd) return press_time def find_piece_and_board(im): w, h = im.size piece_x_sum = 0 piece_x_c = 0 piece_y_max = 0 board_x = 0 board_y = 0 scan_x_border = int(w / 8) # 扫描棋子时的左右边界 scan_start_y = 0 # 扫描的起始y坐标 im_pixel=im.load() # 以50px步长,尝试探测scan_start_y for i in range(int(h / 3), int( h*2 /3 ), 50): last_pixel = im_pixel[0,i] for j in range(1, w): pixel=im_pixel[j,i] # 不是纯色的线,则记录scan_start_y的值,准备跳出循环 if pixel[0] != last_pixel[0] or pixel[1] != last_pixel[1] or pixel[2] != last_pixel[2]: scan_start_y = i - 50 break if scan_start_y: break print('scan_start_y: ', scan_start_y) # 从scan_start_y开始往下扫描,棋子应位于屏幕上半部分,这里暂定不超过2/3 for i in range(scan_start_y, int(h * 2 / 3)): for j in range(scan_x_border, w - scan_x_border): # 横坐标方面也减少了一部分扫描开销 pixel = im_pixel[j,i] # 根据棋子的最低行的颜色判断,找最后一行那些点的平均值,这个颜色这样应该 OK,暂时不提出来 if (50 < pixel[0] < 60) and (53 < pixel[1] < 63) and (95 < pixel[2] < 110): piece_x_sum += j piece_x_c += 1 piece_y_max = max(i, piece_y_max) if not all((piece_x_sum, piece_x_c)): return 0, 0, 0, 0 piece_x = int(piece_x_sum / piece_x_c); piece_y = piece_y_max - piece_base_height_1_2 # 上移棋子底盘高度的一半 #限制棋盘扫描的横坐标,避免音符bug if piece_x < w/2: board_x_start = piece_x board_x_end = w else: board_x_start = 0 board_x_end = piece_x for i in range(int(h / 3), int(h * 2 / 3)): last_pixel = im_pixel[0, i] if board_x or board_y: break board_x_sum = 0 board_x_c = 0 for j in range(int(board_x_start), int(board_x_end)): pixel = im_pixel[j,i] # 修掉脑袋比下一个小格子还高的情况的 bug if abs(j - piece_x) < piece_body_width: continue # 修掉圆顶的时候一条线导致的小 bug,这个颜色判断应该 OK,暂时不提出来 if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10: board_x_sum += j board_x_c += 1 if board_x_sum: board_x = board_x_sum / board_x_c last_pixel=im_pixel[board_x,i] #从上顶点往下+274的位置开始向上找颜色与上顶点一样的点,为下顶点 #该方法对所有纯色平面和部分非纯色平面有效,对高尔夫草坪面、木纹桌面、药瓶和非菱形的碟机(好像是)会判断错误 for k in range(i+274, i, -1): #274取开局时最大的方块的上下顶点距离 pixel = im_pixel[board_x,k] if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) < 10: break board_y = int((i+k) / 2) #如果上一跳命中中间,则下个目标中心会出现r245 g245 b245的点,利用这个属性弥补上一段代码可能存在的判断错误 #若上一跳由于某种原因没有跳到正中间,而下一跳恰好有无法正确识别花纹,则有可能游戏失败,由于花纹面积通常比较大,失败概率较低 for l in range(i, i+200): pixel = im_pixel[board_x,l] if abs(pixel[0] - 245) + abs(pixel[1] - 245) + abs(pixel[2] - 245) == 0: board_y = l+10 break if not all((board_x, board_y)): return 0, 0, 0, 0 return piece_x, piece_y, board_x, board_y def dump_device_info(): size_str = os.popen('adb shell wm size').read() device_str = os.popen('adb shell getprop ro.product.model').read() density_str = os.popen('adb shell wm density').read() print("如果你的脚本无法工作,上报issue时请copy如下信息:\n********** \nScreen: {size}\nDensity: {dpi}\nDeviceType: {type}\nOS: {os}\nPython: {python}\n**********".format( size=size_str.strip(), type=device_str.strip(), dpi=density_str.strip(), os=sys.platform, python=sys.version )) def check_screenshot(): global screenshot_way if os.path.isfile('autojump.png'): os.remove('autojump.png') if (screenshot_way < 0): print('暂不支持当前设备') sys.exit() pull_screenshot() try: Image.open('./autojump.png').load() print('采用方式{}获取截图'.format(screenshot_way)) except: screenshot_way -= 1 check_screenshot() def main(): dump_device_info() check_screenshot() while True: pull_screenshot() im = Image.open('./autojump.png') # 获取棋子和 board 的位置 piece_x, piece_y, board_x, board_y = find_piece_and_board(im) ts = int(time.time()) print(ts, piece_x, piece_y, board_x, board_y) set_button_position(im) jump(math.sqrt((board_x - piece_x) ** 2 + (board_y - piece_y) ** 2)) save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y) backup_screenshot(ts) time.sleep(1) # 为了保证截图的时候应落稳了,多延迟一会儿 if __name__ == '__main__': main()
代码较多,直接为大家分享源码下载链接,很详细:python微信跳一跳
更多内容大家可以参考专题《微信跳一跳》进行学习。
相关文章学习推荐:
跳一跳小游戏python脚本
python基于TensorFlow实现微信跳一跳的AI
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。