本文实例为大家分享了Python实现感知器模型、两层神经网络,供大家参考,具体内容如下
python 3.4 因为使用了 numpy
这里我们首先实现一个感知器模型来实现下面的对应关系
[[0,0,1], ——- 0
[0,1,1], ——- 1
[1,0,1], ——- 0
[1,1,1]] ——- 1
从上面的数据可以看出:输入是三通道,输出是单通道。
这里的激活函数我们使用 sigmoid 函数 f(x)=1/(1+exp(-x))
其导数推导如下所示:
L0=W*X;
z=f(L0);
error=y-z;
delta =error * f'(L0) * X;
W=W+delta;
python 代码如下:
import numpy as np #sigmoid function def nonlin(x, deriv = False): if(deriv==True): return x*(1-x) return 1/(1+np.exp(-x)) # input dataset X=np.array([[0,0,1], [0,1,1], [1,0,1], [1,1,1]]) # output dataset y=np.array([[0,1,0,1]]).T #seed( ) 用于指定随机数生成时所用算法开始的整数值, #如果使用相同的seed( )值,则每次生成的随即数都相同, #如果不设置这个值,则系统根据时间来自己选择这个值, #此时每次生成的随机数因时间差异而不同。 np.random.seed(1) # init weight value with mean 0 syn0 = 2*np.random.random((3,1))-1 for iter in range(1000): # forward propagation L0=X L1=nonlin(np.dot(L0,syn0)) # error L1_error=y-L1 L1_delta = L1_error*nonlin(L1,True) # updata weight syn0+=np.dot(L0.T,L1_delta) print("Output After Training:") print(L1)
从输出结果可以看出基本实现了对应关系。
下面再用两层网络来实现上面的任务,这里加了一个隐层,隐层包含4个神经元。
import numpy as np def nonlin(x, deriv = False): if(deriv == True): return x*(1-x) else: return 1/(1+np.exp(-x)) #input dataset X = np.array([[0,0,1], [0,1,1], [1,0,1], [1,1,1]]) #output dataset y = np.array([[0,1,1,0]]).T #the first-hidden layer weight value syn0 = 2*np.random.random((3,4)) - 1 #the hidden-output layer weight value syn1 = 2*np.random.random((4,1)) - 1 for j in range(60000): l0 = X #the first layer,and the input layer l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer l2_error = y-l2 #the hidden-output layer error if(j%10000) == 0: print "Error:"+str(np.mean(l2_error)) l2_delta = l2_error*nonlin(l2,deriv = True) l1_error = l2_delta.dot(syn1.T) #the first-hidden layer error l1_delta = l1_error*nonlin(l1,deriv = True) syn1 += l1.T.dot(l2_delta) syn0 += l0.T.dot(l1_delta) print "outout after Training:" print l2
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。