当前位置:首页 >> 脚本专栏

Python实现并行抓取整站40万条房价数据(可更换抓取城市)

写在前面

这次的爬虫是关于房价信息的抓取,目的在于练习10万以上的数据处理及整站式抓取。

数据量的提升最直观的感觉便是对函数逻辑要求的提高,针对Python的特性,谨慎的选择数据结构。以往小数据量的抓取,即使函数逻辑部分重复,I/O请求频率密集,循环套嵌过深,也不过是1~2s的差别,而随着数据规模的提高,这1~2s的差别就有可能扩展成为1~2h。

因此对于要抓取数据量较多的网站,可以从两方面着手降低抓取信息的时间成本。

1)优化函数逻辑,选择适当的数据结构,符合Pythonic的编程习惯。例如,字符串的合并,使用join()要比“+”节省内存空间。

2)依据I/O密集与CPU密集,选择多线程、多进程并行的执行方式,提高执行效率。

一、获取索引

包装请求request,设置超时timeout

# 获取列表页面
def get_page(url):
 headers = {
  'User-Agent': r'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) '
      r'Chrome/45.0.2454.85 Safari/537.36 115Browser/6.0.3',
  'Referer': r'http://bj.fangjia.com/ershoufang/',
  'Host': r'bj.fangjia.com',
  'Connection': 'keep-alive'
 }
 timeout = 60
 socket.setdefaulttimeout(timeout) # 设置超时
 req = request.Request(url, headers=headers)
 response = request.urlopen(req).read()
 page = response.decode('utf-8')
 return page

一级位置:区域信息

Python实现并行抓取整站40万条房价数据(可更换抓取城市)

二级位置:板块信息(根据区域位置得到板块信息,以key_value对的形式存储在dict中)

Python实现并行抓取整站40万条房价数据(可更换抓取城市)

以dict方式存储,可以快速的查询到所要查找的目标。-> {'朝阳':{'工体','安贞','健翔桥'......}}

三级位置:地铁信息(搜索地铁周边房源信息)

Python实现并行抓取整站40万条房价数据(可更换抓取城市)

将所属位置地铁信息,添加至dict中。  -> {'朝阳':{'工体':{'5号线','10号线' , '13号线'},'安贞','健翔桥'......}}

对应的url:http://bj.fangjia.com/ershoufang/--r-%E6%9C%9D%E9%98%B3%7Cw-5%E5%8F%B7%E7%BA%BF%7Cb-%E6%83%A0%E6%96%B0%E8%A5%BF%E8%A1%97

解码后的url:http://bj.fangjia.com/ershoufang/--r-朝阳|w-5号线|b-惠新西街

根据url的参数模式,可以有两种方式获取目的url:

1)根据索引路径获得目的url

Python实现并行抓取整站40万条房价数据(可更换抓取城市)

# 获取房源信息列表(嵌套字典遍历)
def get_info_list(search_dict, layer, tmp_list, search_list):
 layer += 1 # 设置字典层级
 for i in range(len(search_dict)):
  tmp_key = list(search_dict.keys())[i] # 提取当前字典层级key
  tmp_list.append(tmp_key) # 将当前key值作为索引添加至tmp_list
  tmp_value = search_dict[tmp_key]
  if isinstance(tmp_value, str): # 当键值为url时
   tmp_list.append(tmp_value) # 将url添加至tmp_list
   search_list.append(copy.deepcopy(tmp_list)) # 将tmp_list索引url添加至search_list
   tmp_list = tmp_list[:layer] # 根据层级保留索引
  elif tmp_value == '': # 键值为空时跳过
   layer -= 2   # 跳出键值层级
   tmp_list = tmp_list[:layer] # 根据层级保留索引
  else:
   get_info_list(tmp_value, layer, tmp_list, search_list) # 当键值为列表时,迭代遍历
   tmp_list = tmp_list[:layer]
 return search_list

2)根据dict信息包装url

 {'朝阳':{'工体':{'5号线'}}}

参数:

——  r-朝阳

——  b-工体

——  w-5号线

组装参数:http://bj.fangjia.com/ershoufang/--r-朝阳|w-5号线|b-工体

1 # 根据参数创建组合url
2 def get_compose_url(compose_tmp_url, tag_args, key_args):
3  compose_tmp_url_list = [compose_tmp_url, '|' if tag_args != 'r-' else '', tag_args, parse.quote(key_args), ]
4  compose_url = ''.join(compose_tmp_url_list)
5  return compose_url

二、获取索引页最大页数

# 获取当前索引页面页数的url列表
def get_info_pn_list(search_list):
 fin_search_list = []
 for i in range(len(search_list)):
  print('>正在抓取%s' % search_list[i][:3])
  search_url = search_list[i][3]
  try:
   page = get_page(search_url)
  except:
   print('获取页面超时')
   continue
  soup = BS(page, 'lxml')
  # 获取最大页数
  pn_num = soup.select('span[class="mr5"]')[0].get_text()
  rule = re.compile(r'\d+')
  max_pn = int(rule.findall(pn_num)[1])
  # 组装url
  for pn in range(1, max_pn+1):
   print('************************正在抓取%s页************************' % pn)
   pn_rule = re.compile('[|]')
   fin_url = pn_rule.sub(r'|e-%s|' % pn, search_url, 1)
   tmp_url_list = copy.deepcopy(search_list[i][:3])
   tmp_url_list.append(fin_url)
   fin_search_list.append(tmp_url_list)
 return fin_search_list

三、抓取房源信息Tag

这是我们要抓取的Tag:

['区域', '板块', '地铁', '标题', '位置', '平米', '户型', '楼层', '总价', '单位平米价格']

Python实现并行抓取整站40万条房价数据(可更换抓取城市)

# 获取tag信息
def get_info(fin_search_list, process_i):
 print('进程%s开始' % process_i)
 fin_info_list = []
 for i in range(len(fin_search_list)):
  url = fin_search_list[i][3]
  try:
   page = get_page(url)
  except:
   print('获取tag超时')
   continue
  soup = BS(page, 'lxml')
  title_list = soup.select('a[class="h_name"]')
  address_list = soup.select('span[class="address]')
  attr_list = soup.select('span[class="attribute"]')
  price_list = soup.find_all(attrs={"class": "xq_aprice xq_esf_width"}) # select对于某些属性值(属性值中间包含空格)无法识别,可以用find_all(attrs={})代替
  for num in range(20):
   tag_tmp_list = []
   try:
    title = title_list[num].attrs["title"]
    print(r'************************正在获取%s************************' % title)
    address = re.sub('\n', '', address_list[num].get_text()) 
    area = re.search('\d+[\u4E00-\u9FA5]{2}', attr_list[num].get_text()).group(0) 
    layout = re.search('\d[^0-9]\d.', attr_list[num].get_text()).group(0)
    floor = re.search('\d/\d', attr_list[num].get_text()).group(0)
    price = re.search('\d+[\u4E00-\u9FA5]', price_list[num].get_text()).group(0)
    unit_price = re.search('\d+[\u4E00-\u9FA5]/.', price_list[num].get_text()).group(0)
    tag_tmp_list = copy.deepcopy(fin_search_list[i][:3])
    for tag in [title, address, area, layout, floor, price, unit_price]:
     tag_tmp_list.append(tag)
    fin_info_list.append(tag_tmp_list)
   except:
    print('【抓取失败】')
    continue
 print('进程%s结束' % process_i)
 return fin_info_list

四、分配任务,并行抓取

对任务列表进行分片,设置进程池,并行抓取。

# 分配任务
def assignment_search_list(fin_search_list, project_num): # project_num每个进程包含的任务数,数值越小,进程数越多
 assignment_list = []
 fin_search_list_len = len(fin_search_list)
 for i in range(0, fin_search_list_len, project_num):
  start = i
  end = i+project_num
  assignment_list.append(fin_search_list[start: end]) # 获取列表碎片
 return assignment_list
 p = Pool(4) # 设置进程池
 assignment_list = assignment_search_list(fin_info_pn_list, 3) # 分配任务,用于多进程
 result = [] # 多进程结果列表
 for i in range(len(assignment_list)):
  result.append(p.apply_async(get_info, args=(assignment_list[i], i)))
 p.close()
 p.join()
 for result_i in range(len(result)):
  fin_info_result_list = result[result_i].get()
  fin_save_list.extend(fin_info_result_list) # 将各个进程获得的列表合并

通过设置进程池并行抓取,时间缩短为单进程抓取时间的3/1,总计时间3h。

电脑为4核,经过测试,任务数为3时,在当前电脑运行效率最高。

五、将抓取结果存储到excel中,等待可视化数据化处理

# 存储抓取结果
def save_excel(fin_info_list, file_name):
 tag_name = ['区域', '板块', '地铁', '标题', '位置', '平米', '户型', '楼层', '总价', '单位平米价格']
 book = xlsxwriter.Workbook(r'C:\Users\Administrator\Desktop\%s.xls' % file_name) # 默认存储在桌面上
 tmp = book.add_worksheet()
 row_num = len(fin_info_list)
 for i in range(1, row_num):
  if i == 1:
   tag_pos = 'A%s' % i
   tmp.write_row(tag_pos, tag_name)
  else:
   con_pos = 'A%s' % i
   content = fin_info_list[i-1] # -1是因为被表格的表头所占
   tmp.write_row(con_pos, content)
 book.close()

Python实现并行抓取整站40万条房价数据(可更换抓取城市)

附上源码

#! -*-coding:utf-8-*-
# Function: 房价调查
# Author:蘭兹
from urllib import parse, request
from bs4 import BeautifulSoup as BS
from multiprocessing import Pool
import re
import lxml
import datetime
import cProfile
import socket
import copy
import xlsxwriter
starttime = datetime.datetime.now()
base_url = r'http://bj.fangjia.com/ershoufang/'
test_search_dict = {'昌平': {'霍营': {'13号线': 'http://bj.fangjia.com/ershoufang/--r-%E6%98%8C%E5%B9%B3|w-13%E5%8F%B7%E7%BA%BF|b-%E9%9C%8D%E8%90%A5'}}}
search_list = [] # 房源信息url列表
tmp_list = [] # 房源信息url缓存列表
layer = -1
# 获取列表页面
def get_page(url):
 headers = {
  'User-Agent': r'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) '
      r'Chrome/45.0.2454.85 Safari/537.36 115Browser/6.0.3',
  'Referer': r'http://bj.fangjia.com/ershoufang/',
  'Host': r'bj.fangjia.com',
  'Connection': 'keep-alive'
 }
 timeout = 60
 socket.setdefaulttimeout(timeout) # 设置超时
 req = request.Request(url, headers=headers)
 response = request.urlopen(req).read()
 page = response.decode('utf-8')
 return page
# 获取查询关键词dict
def get_search(page, key):
 soup = BS(page, 'lxml')
 search_list = soup.find_all(href=re.compile(key), target='')
 search_dict = {}
 for i in range(len(search_list)):
  soup = BS(str(search_list[i]), 'lxml')
  key = soup.select('a')[0].get_text()
  value = soup.a.attrs['href']
  search_dict[key] = value
 return search_dict
# 获取房源信息列表(嵌套字典遍历)
def get_info_list(search_dict, layer, tmp_list, search_list):
 layer += 1 # 设置字典层级
 for i in range(len(search_dict)):
  tmp_key = list(search_dict.keys())[i] # 提取当前字典层级key
  tmp_list.append(tmp_key) # 将当前key值作为索引添加至tmp_list
  tmp_value = search_dict[tmp_key]
  if isinstance(tmp_value, str): # 当键值为url时
   tmp_list.append(tmp_value) # 将url添加至tmp_list
   search_list.append(copy.deepcopy(tmp_list)) # 将tmp_list索引url添加至search_list
   tmp_list = tmp_list[:layer] # 根据层级保留索引
  elif tmp_value == '': # 键值为空时跳过
   layer -= 2   # 跳出键值层级
   tmp_list = tmp_list[:layer] # 根据层级保留索引
  else:
   get_info_list(tmp_value, layer, tmp_list, search_list) # 当键值为列表时,迭代遍历
   tmp_list = tmp_list[:layer]
 return search_list
# 获取房源信息详情
def get_info_pn_list(search_list):
 fin_search_list = []
 for i in range(len(search_list)):
  print('>正在抓取%s' % search_list[i][:3])
  search_url = search_list[i][3]
  try:
   page = get_page(search_url)
  except:
   print('获取页面超时')
   continue
  soup = BS(page, 'lxml')
  # 获取最大页数
  pn_num = soup.select('span[class="mr5"]')[0].get_text()
  rule = re.compile(r'\d+')
  max_pn = int(rule.findall(pn_num)[1])
  # 组装url
  for pn in range(1, max_pn+1):
   print('************************正在抓取%s页************************' % pn)
   pn_rule = re.compile('[|]')
   fin_url = pn_rule.sub(r'|e-%s|' % pn, search_url, 1)
   tmp_url_list = copy.deepcopy(search_list[i][:3])
   tmp_url_list.append(fin_url)
   fin_search_list.append(tmp_url_list)
 return fin_search_list
# 获取tag信息
def get_info(fin_search_list, process_i):
 print('进程%s开始' % process_i)
 fin_info_list = []
 for i in range(len(fin_search_list)):
  url = fin_search_list[i][3]
  try:
   page = get_page(url)
  except:
   print('获取tag超时')
   continue
  soup = BS(page, 'lxml')
  title_list = soup.select('a[class="h_name"]')
  address_list = soup.select('span[class="address]')
  attr_list = soup.select('span[class="attribute"]')
  price_list = soup.find_all(attrs={"class": "xq_aprice xq_esf_width"}) # select对于某些属性值(属性值中间包含空格)无法识别,可以用find_all(attrs={})代替
  for num in range(20):
   tag_tmp_list = []
   try:
    title = title_list[num].attrs["title"]
    print(r'************************正在获取%s************************' % title)
    address = re.sub('\n', '', address_list[num].get_text())
    area = re.search('\d+[\u4E00-\u9FA5]{2}', attr_list[num].get_text()).group(0)
    layout = re.search('\d[^0-9]\d.', attr_list[num].get_text()).group(0)
    floor = re.search('\d/\d', attr_list[num].get_text()).group(0)
    price = re.search('\d+[\u4E00-\u9FA5]', price_list[num].get_text()).group(0)
    unit_price = re.search('\d+[\u4E00-\u9FA5]/.', price_list[num].get_text()).group(0)
    tag_tmp_list = copy.deepcopy(fin_search_list[i][:3])
    for tag in [title, address, area, layout, floor, price, unit_price]:
     tag_tmp_list.append(tag)
    fin_info_list.append(tag_tmp_list)
   except:
    print('【抓取失败】')
    continue
 print('进程%s结束' % process_i)
 return fin_info_list
# 分配任务
def assignment_search_list(fin_search_list, project_num): # project_num每个进程包含的任务数,数值越小,进程数越多
 assignment_list = []
 fin_search_list_len = len(fin_search_list)
 for i in range(0, fin_search_list_len, project_num):
  start = i
  end = i+project_num
  assignment_list.append(fin_search_list[start: end]) # 获取列表碎片
 return assignment_list
# 存储抓取结果
def save_excel(fin_info_list, file_name):
 tag_name = ['区域', '板块', '地铁', '标题', '位置', '平米', '户型', '楼层', '总价', '单位平米价格']
 book = xlsxwriter.Workbook(r'C:\Users\Administrator\Desktop\%s.xls' % file_name) # 默认存储在桌面上
 tmp = book.add_worksheet()
 row_num = len(fin_info_list)
 for i in range(1, row_num):
  if i == 1:
   tag_pos = 'A%s' % i
   tmp.write_row(tag_pos, tag_name)
  else:
   con_pos = 'A%s' % i
   content = fin_info_list[i-1] # -1是因为被表格的表头所占
   tmp.write_row(con_pos, content)
 book.close()
if __name__ == '__main__':
 file_name = input(r'抓取完成,输入文件名保存:')
 fin_save_list = [] # 抓取信息存储列表
 # 一级筛选
 page = get_page(base_url)
 search_dict = get_search(page, 'r-')
 # 二级筛选
 for k in search_dict:
  print(r'************************一级抓取:正在抓取【%s】************************' % k)
  url = search_dict[k]
  second_page = get_page(url)
  second_search_dict = get_search(second_page, 'b-')
  search_dict[k] = second_search_dict
 # 三级筛选
 for k in search_dict:
  second_dict = search_dict[k]
  for s_k in second_dict:
   print(r'************************二级抓取:正在抓取【%s】************************' % s_k)
   url = second_dict[s_k]
   third_page = get_page(url)
   third_search_dict = get_search(third_page, 'w-')
   print('%s>%s' % (k, s_k))
   second_dict[s_k] = third_search_dict
 fin_info_list = get_info_list(search_dict, layer, tmp_list, search_list)
 fin_info_pn_list = get_info_pn_list(fin_info_list)
 p = Pool(4) # 设置进程池
 assignment_list = assignment_search_list(fin_info_pn_list, 2) # 分配任务,用于多进程
 result = [] # 多进程结果列表
 for i in range(len(assignment_list)):
  result.append(p.apply_async(get_info, args=(assignment_list[i], i)))
 p.close()
 p.join()
 for result_i in range(len(result)):
  fin_info_result_list = result[result_i].get()
  fin_save_list.extend(fin_info_result_list) # 将各个进程获得的列表合并
 save_excel(fin_save_list, file_name)
 endtime = datetime.datetime.now()
 time = (endtime - starttime).seconds
 print('总共用时:%s s' % time)

总结:

当抓取数据规模越大,对程序逻辑要求就愈严谨,对python语法要求就越熟练。如何写出更加pythonic的语法,也需要不断学习掌握的。

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持!