当前位置:首页 >> 脚本专栏

进一步探究Python中的正则表达式

字符串是编程时涉及到的最多的一种数据结构,对字符串进行操作的需求几乎无处不在。比如判断一个字符串是否是合法的Email地址,虽然可以编程提取@前后的子串,再分别判断是否是单词和域名,但这样做不但麻烦,而且代码难以复用。

正则表达式是一种用来匹配字符串的强有力的武器。它的设计思想是用一种描述性的语言来给字符串定义一个规则,凡是符合规则的字符串,我们就认为它“匹配”了,否则,该字符串就是不合法的。

所以我们判断一个字符串是否是合法的Email的方法是:

  •     创建一个匹配Email的正则表达式;
  •     用该正则表达式去匹配用户的输入来判断是否合法。

因为正则表达式也是用字符串表示的,所以,我们要首先了解如何用字符来描述字符。

在正则表达式中,如果直接给出字符,就是精确匹配。用\d可以匹配一个数字,\w可以匹配一个字母或数字,所以:

  •     '00\d'可以匹配'007',但无法匹配'00A';
  •     '\d\d\d'可以匹配'010';
  •     '\w\w\d'可以匹配'py3';

.可以匹配任意字符,所以:

    'py.'可以匹配'pyc'、'pyo'、'py!'等等。

要匹配变长的字符,在正则表达式中,用*表示任意个字符(包括0个),用+表示至少一个字符,用"htmlcode">

s = 'ABC\\-001' # Python的字符串
# 对应的正则表达式字符串变成:
# 'ABC\-001'

因此我们强烈建议使用Python的r前缀,就不用考虑转义的问题了:

s = r'ABC\-001' # Python的字符串
# 对应的正则表达式字符串不变:
# 'ABC\-001'

先看看如何判断正则表达式是否匹配:

> import re
> re.match(r'^\d{3}\-\d{3,8}$', '010-12345')
<_sre.SRE_Match object at 0x1026e18b8>
> re.match(r'^\d{3}\-\d{3,8}$', '010 12345')
>

match()方法判断是否匹配,如果匹配成功,返回一个Match对象,否则返回None。常见的判断方法就是:

test = '用户输入的字符串'
if re.match(r'正则表达式', test):
 print 'ok'
else:
 print 'failed'

切分字符串

用正则表达式切分字符串比用固定的字符更灵活,请看正常的切分代码:

> 'a b c'.split(' ')
['a', 'b', '', '', 'c']

嗯,无法识别连续的空格,用正则表达式试试:

> re.split(r'\s+', 'a b c')
['a', 'b', 'c']

无论多少个空格都可以正常分割。加入,试试:

> re.split(r'[\s\,]+', 'a,b, c d')
['a', 'b', 'c', 'd']

再加入;试试:

> re.split(r'[\s\,\;]+', 'a,b;; c d')
['a', 'b', 'c', 'd']

如果用户输入了一组标签,下次记得用正则表达式来把不规范的输入转化成正确的数组。
分组

除了简单地判断是否匹配之外,正则表达式还有提取子串的强大功能。用()表示的就是要提取的分组(Group)。比如:

^(\d{3})-(\d{3,8})$分别定义了两个组,可以直接从匹配的字符串中提取出区号和本地号码:

> m = re.match(r'^(\d{3})-(\d{3,8})$', '010-12345')
> m
<_sre.SRE_Match object at 0x1026fb3e8>
> m.group(0)
'010-12345'
> m.group(1)
'010'
> m.group(2)
'12345'

如果正则表达式中定义了组,就可以在Match对象上用group()方法提取出子串来。

注意到group(0)永远是原始字符串,group(1)、group(2)……表示第1、2、……个子串。

提取子串非常有用。来看一个更凶残的例子:

> t = '19:05:30'
> m = re.match(r'^(0[0-9]|1[0-9]|2[0-3]|[0-9])\:(0[0-9]|1[0-9]|2[0-9]|3[0-9]|4[0-9]|5[0-9]|[0-9])\:(0[0-9]|1[0-9]|2[0-9]|3[0-9]|4[0-9]|5[0-9]|[0-9])$', t)
> m.groups()
('19', '05', '30')

这个正则表达式可以直接识别合法的时间。但是有些时候,用正则表达式也无法做到完全验证,比如识别日期:

'^(0[1-9]|1[0-2]|[0-9])-(0[1-9]|1[0-9]|2[0-9]|3[0-1]|[0-9])$'

对于'2-30','4-31'这样的非法日期,用正则还是识别不了,或者说写出来非常困难,这时就需要程序配合识别了。
贪婪匹配

最后需要特别指出的是,正则匹配默认是贪婪匹配,也就是匹配尽可能多的字符。举例如下,匹配出数字后面的0:

> re.match(r'^(\d+)(0*)$', '102300').groups()
('102300', '')

由于\d+采用贪婪匹配,直接把后面的0全部匹配了,结果0*只能匹配空字符串了。

必须让\d+采用非贪婪匹配(也就是尽可能少匹配),才能把后面的0匹配出来,加个"htmlcode">

> re.match(r'^(\d+"htmlcode">
> import re
# 编译:
> re_telephone = re.compile(r'^(\d{3})-(\d{3,8})$')
# 使用:
> re_telephone.match('010-12345').groups()
('010', '12345')
> re_telephone.match('010-8086').groups()
('010', '8086')

编译后生成Regular Expression对象,由于该对象自己包含了正则表达式,所以调用对应的方法时不用给出正则字符串。
小结

正则表达式非常强大,要在短短的一节里讲完是不可能的。要讲清楚正则的所有内容,可以写一本厚厚的书了。如果你经常遇到正则表达式的问题,你可能需要一本正则表达式的参考书。

请尝试写一个验证Email地址的正则表达式。版本一应该可以验证出类似的Email:

someone@gmail.com
bill.gates@microsoft.com
Try

版本二可以验证并提取出带名字的Email地址:

<Tom Paris> tom@voyager.org