因为固体物理书上的球面投影图太难看,就自学 javascipt 用 echarts 做了个可交互的,效果如下:
上面为立方晶系主要晶面(晶向)的球面投影,具体计算代码如下:
import math import numpy as np def c_scale(A): A = np.array(A) n_dim = A.shape[1]; n_size = A.shape[0] scale2 = np.zeros(n_size) for j in range(n_dim): for i in range(n_size): scale2[i] += A[i,j]**2 scale = scale2 ** 0.5 return scale def normalize(A): # 二维数组归一化 A = np.array(A) scale = c_scale(A) A = np.divide(A.T,scale).T return A def cal_point_dict(input_str_list): points = []; points_dicts = [] for input_str in input_str_list: input_str=input_str.replace('[',''); input_str=input_str.replace(']','') try: data = input_str.split(' ') point = [] # 求解投影点 for j in range(len(data)): point.append(int(data[j])) points.append(point) except: data = input_str.split(',') point = [] # 求解投影点 for j in range(len(data)): point.append(int(data[j])) points.append(point) points_p = normalize(points) for i in range(len(points_p)): points_dict={} points_dict['name']=input_str_list[i] points_dict['value']=points_p[i].tolist() points_dicts.append(points_dict) return points_dicts # 各晶面指数 input_str_list = ['[0 0 1]','[1 0 0]','[0 1 0]','[0 0 -1]','[-1 0 0]','[0 -1 0]', '[1 0 1]','[0 1 1]','[1 1 0]','[-1 0 -1]','[0 -1 -1]','[-1 -1 0]', '[1 0 -1]','[0 1 -1]','[1 -1 0]','[-1 0 1]','[0 -1 1]','[-1 1 0]', '[1 1 1]','[-1 1 1]','[1 -1 1]','[1 1 -1]', '[-1 -1 -1]','[1 -1 -1]','[-1 1 -1]','[-1 -1 1]'] points_dicts = cal_point_dict(input_str_list) points_dicts # 将该数据复制到 球坐标.html 下
绘图 html 源码:
<!DOCTYPE html> <html style="height: 100%"> <head> <meta charset="utf-8"> </head> <body style="height: 100%; margin: 0"> <div id="container" style="height: 100%"></div> <script type="text/javascript" src="/UploadFiles/2021-04-02/echarts.min.js">然而这样画出的图形还不能实现 3D 空间中的遮挡关系,要进一步实现可能还要借助 echarts 的地理坐标功能。
总结